3n^2+7n-200=0

Simple and best practice solution for 3n^2+7n-200=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3n^2+7n-200=0 equation:


Simplifying
3n2 + 7n + -200 = 0

Reorder the terms:
-200 + 7n + 3n2 = 0

Solving
-200 + 7n + 3n2 = 0

Solving for variable 'n'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-66.66666667 + 2.333333333n + n2 = 0

Move the constant term to the right:

Add '66.66666667' to each side of the equation.
-66.66666667 + 2.333333333n + 66.66666667 + n2 = 0 + 66.66666667

Reorder the terms:
-66.66666667 + 66.66666667 + 2.333333333n + n2 = 0 + 66.66666667

Combine like terms: -66.66666667 + 66.66666667 = 0.00000000
0.00000000 + 2.333333333n + n2 = 0 + 66.66666667
2.333333333n + n2 = 0 + 66.66666667

Combine like terms: 0 + 66.66666667 = 66.66666667
2.333333333n + n2 = 66.66666667

The n term is 2.333333333n.  Take half its coefficient (1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
2.333333333n + 1.361111112 + n2 = 66.66666667 + 1.361111112

Reorder the terms:
1.361111112 + 2.333333333n + n2 = 66.66666667 + 1.361111112

Combine like terms: 66.66666667 + 1.361111112 = 68.027777782
1.361111112 + 2.333333333n + n2 = 68.027777782

Factor a perfect square on the left side:
(n + 1.166666667)(n + 1.166666667) = 68.027777782

Calculate the square root of the right side: 8.247895355

Break this problem into two subproblems by setting 
(n + 1.166666667) equal to 8.247895355 and -8.247895355.

Subproblem 1

n + 1.166666667 = 8.247895355 Simplifying n + 1.166666667 = 8.247895355 Reorder the terms: 1.166666667 + n = 8.247895355 Solving 1.166666667 + n = 8.247895355 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + n = 8.247895355 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + n = 8.247895355 + -1.166666667 n = 8.247895355 + -1.166666667 Combine like terms: 8.247895355 + -1.166666667 = 7.081228688 n = 7.081228688 Simplifying n = 7.081228688

Subproblem 2

n + 1.166666667 = -8.247895355 Simplifying n + 1.166666667 = -8.247895355 Reorder the terms: 1.166666667 + n = -8.247895355 Solving 1.166666667 + n = -8.247895355 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + n = -8.247895355 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + n = -8.247895355 + -1.166666667 n = -8.247895355 + -1.166666667 Combine like terms: -8.247895355 + -1.166666667 = -9.414562022 n = -9.414562022 Simplifying n = -9.414562022

Solution

The solution to the problem is based on the solutions from the subproblems. n = {7.081228688, -9.414562022}

See similar equations:

| 3=-1.5+b | | 3a/4=(a-3)/1 | | 4(x-2)-3x=7 | | 3a/4=(a-3) | | y=-4/5*8-8 | | y+10=2(y+2)+8 | | 8*8-4.5x=y | | 8-7y=-56 | | 5a-3a+4=6 | | 8x-7=-56 | | y+10=2y+12 | | K=5r-1111s | | 5(7t)=85-3k | | 14(z+13)=14z+21 | | 3(3x)+2(5)=60x-300 | | 23-x*44=199 | | 35t-85=3k | | X/3*(125-x^2) | | X/3×(125-x^2) | | (4p-5)(p-2)=0 | | 560-13x=365 | | y+31=2x | | 4*4-2y=-8 | | 60z+50z-97z=-37z+49 | | 2n+126=396 | | x+(x+4)+3x=24 | | -x^3-x^2+30x=0 | | 3p+9q=36 | | 2x^4+x^3-3x^2+5x-2=0 | | 2x=145+2 | | 4x+33+2x+1+3x=90 | | -5x^4+20x^3+60x^2=y |

Equations solver categories